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Abstract Determining the positions, shapes and sizes of
finite living particles such as bacteria, mitochondria or
vesicles is of interest in many biological processes. In
fluorescence microscopy, algorithms that can simulta-
neously localize such particles as a function of time and
determine the parameters of their shapes and sizes at the
nanometer scale are not yet available. Here we develop
two such algorithms based on convolution and correla-
tion image analysis that take into account the position,
orientation, shape and size of the object being tracked,
and we compare the precision of the two algorithms using
computer simulations. We show that the precision of
both algorithms strongly depends on the object’s size. In
cases where the diameter of the object is larger than about
four to five times the beam waist radius, the convolution
algorithm gives a better precision than the correlation
algorithm (it leads to more precise parameters), while for
smaller object diameters, the correlation algorithm gives
superior precision. We apply the convolution algorithm
to sequences of confocal laser scanning micrographs of
immobile Escherichia coli bacteria, and show that the
centroid, the front end, the rear end, the left border and
the right border of a bacterium can be determined with a
signal-to-noise-dependent precision down to �5 nm.

Keywords Correlation Æ Convolution Æ Tracking
precision Æ Accuracy Æ Eschericha coli Æ Laser Scanning
Microscopy

Introduction

Single-particle tracking (SPT) is a tool that is often used
in biophysical research to observe displacements and

trajectories of small fluorescent particles in motility as-
says and in cell membranes (Saxton and Jacobson 1997).
Depending on the object and background intensity in
subsequent images, a localization and tracking precision
down to the nanometer scale can be achieved (Yildiz
et al. 2003). Common SPT algorithms give reliable re-
sults if the object being tracked has a constant diameter
that is markedly smaller than the wavelength of the
fluorescent light. However, these standard algorithms
fail in cases where a finite particle with a diameter si-
milar to the wavelength of light changes shape, size or
orientation during tracking. Here we report on the
computer analysis of images taken from fluorescence-
labeled Escherichia coli bacteria in vitro. We derive
equations for convolution and auto- and cross-correla-
tion image analysis that take into account shape, size,
orientation and position of the object being tracked, and
quantitatively compare the accuracy and the precision of
both algorithms by computer simulations. Measure-
ments were performed using a home-built instrument
that combines the advantages of fluorescence correlation
spectroscopy (FCS) (Krichevsky and Bonnet 2002; Kim
and Schwille 2003) and confocal laser scanning micro-
scopy (CLSM). Analyzing subsequent CLSM images of
immobile fluorescent bacteria with the finite particle
tracking (FPT) algorithms developed demonstrate that
the edges and the centroid of sausage-like structures, like
bacteria, can be determined with a precision down to
5 nm. The models for FPT analysis introduced here
open up the possibility of high-precision localization and
tracking of vesicles and various types of regularly-
shaped organelles both in vitro and in vivo.

Materials and methods

E. coli bacteria

E. coli bacteria of the substrain K12 were obtained from
standard laboratory cloning experiments. Prior to ima-
ging, the bacteria were diluted and applied in a drop of
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solution onto a coverslip placed on the microscope
stage. The composition of the bath solution was (in
mM): NaCl 98, KCl 2, MgCl2 2, CaCl2 1, Glucose 5,
PyruvatNa 5, HEPES 10, 225 mOsm, pH 7.8. Under
these conditions the bacteria were immobile. E. coli
bacteria were labeled with the fluorescent dye Mito-
Tracker Orange CMTRos (Molecular Probes, Leiden,
The Netherlands), a lipophilic cationic dye derived from
Tetramethylrosamin for staining living mitochondria.
Prior to the CLSM measurements, E. coli bacteria were
incubated for �10 min in 100 nM MitoTracker dis-
solved in the bath solution. MitoTracker accumulated
preferentially in E. coli due to the negative transmem-
brane potential of the bacteria. Measurements were
performed after rinsing of the bath. An inverted Zeiss
Axiovert 35 microscope (Carl Zeiss, Göttingen, Ger-
many) was used to which the following apparatus was
attached.

Combined CLSM and FCS set-up

Figure 1 shows the imaging set-up used (previously de-
scribed in detail, Gennerich and Schild, 2000). Briefly, a
HeNe cw-laser (2.2 mW) at 543.5 nm was used as the
excitation source (LK 54015, Laser Graphics, Dieburg,
Germany). Tandem galvanometer mirrors (GD120DT,
GSI Lumonics, Unterschleissheim, Germany) were used
for x-y-positioning, and a piezo-driven objective holder
(P-721.10, Physik Instrumente, Waldbronn, Germany)
for z-positioning. The back aperture of the objective
used (C-Apochromat 40/1.2 W, Carl Zeiss) was not
overilluminated. The laser intensity was set to 3.14 kW/
cm2 using neutral density filters. The detection pinhole

had a diameter of 50 lm. The beam waist radius and the
structure factor were determined to be rxy=0.24 lm and
S=rz/rxy=7 by FCS measurements of translational
three-dimensional diffusion of tetramethylrhodamine
(TMR) (T-5646, Sigma-Aldrich Chemie, Deisenhofen,
Germany) in water, assuming a diffusion constant of
D=2.8·10�6cm2/s (Rigler et al. 1993).

Two personal computers were used to control the
experiment and data acquisition; for simplicity these are
termed LSM-PC and FCS-PC here. Pulses generated by
the single photon-counting module (SPCM-AQ-141,
EG&G, Optoelectronics, Dumberry, Canada) were
transformed into TTL pulses with the same pulse width
and sent to both PCs. The FCS-PC was equipped with a
hardware correlator board (ALV-5000/E, ALV, Langen,
Germany). The LSM-PC had two additional hardware
cards: first, a DSP-card (ADwin-9, Jäger Messtechnik
GmbH, Lorch, Germany) with 12-bit ADCs and DACs,
and second, a PCI controller interface (PCI-Proto LAB,
H+K Messsysteme GmbH, Berlin, Germany). CLSM
measurements were controlled using a custom-developed
graphics interface (image processing software, IPS)
running under the RT-Linux operating system. The
DSP-card generated the control voltages and sent them
to the x- and y-galvanometer control hardware, and
sampled (12 bit, 10 ls) the x-position signal. The x-y-
position of the confocal detection volume was calculated
based on the known relationship between low frequency
control voltage changes and the corresponding changes
in the spatial coordinates in the object plane, the known
periodicity of the control voltages, and the measured
phase shift between the sampled horizontal position
signal and the corresponding galvanometer input signal.
Images were only calculated for the quasi-linear range of

Fig. 1 Schematic of the
combined CLSM and FCS set-
up. For a detailed description,
see text. Components: F1:
neutral density filter; F2:
interference filter; D1: dichroic
mirror (BSP690, DELTA Light
& Optics, Lyngby, Denmark);
D2: dichroic mirror (BSP-25-
560, DELTA Light & Optics);
GM: tandem galvanometer
mirrors; GCB: galvanometer
controller boards (AE1000
Controller Boards, GSI
Lumonics); PSC: piezo servo
controller (E-610.L0, Physik
Instrumente, Waldbronn,
Germany); PCH: photon
counting hardware; SL: scan
lens; TL1/2: tube lens
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galvanometer positions (the range within which the
focus volume has a constant pixel dwell time). Com-
munication between the DSP-card and PC was inter-
rupt-controlled by PC-DSP communication software
supplied by the vendor (Jäger Messtechnik GmbH,

Lorch, Germany). During CLSM measurements, the
photons captured by the APD were transformed into
TTL pulses and sent to the PCI-card. Custom-made
electronics put the pulses into a 32-bit shift register, and
transferred them via DMA to the LSM-PC’s RAM.
CLSM images were formed by assigning the photon
counts at a given time interval (dwell time) to the pixel
resulting for that time interval from the calculated
position of the detection volume. The images were dis-
played as image sequences on the monitor.

The detection efficiency of the avalanche photodiode
used was 70-80%. Backreflection (kexc=543.5 nm) was
blocked by an interference filter (HQ 582/50, OD6, AF
Analysetechnik, Pfrondorf, Germany) placed in front of
the photodiode. Using an APD allows virtually noise-
free measurements. The APD used had a dark count rate
of 100/s. Given a typical pixel dwell time of 4 ls, this
means that there is one spurious photon every
2500 pixels. On the other hand, the deadtime of the
APD limits the bandwidth. The inset of Fig. 2a shows
the mean count rate ÆNæ of the APD as a function of the
deadtime-corrected mean count rate ÆN¢æ (data supplied
by EG&G, Optoelectronics, Dumberry, Canada). The
deadtime of the detector leads to an underestimation of
the number of incident photons if the number exceeds
�1 Mcps (cps, counts per second), and the photon count
variance r over the number of photons detected
(Fig. 2b) deviates from the linearity typical of Poisson
processes (Yu and Fessler 2000). Furthermore, the
deadtime leads to an increased relative standard devia-
tion r of the photodetector countrate N at rates below
�15·106s�1 (Fig. 2a) as compared to the relative stan-
dard deviation r¢ of the Poisson-distributed countrate
N¢ of a photodetector without deadtime (Fig. 2a). This
effect results in a reduced SNR for the images. As the
localization precision (r) of the object coordinates

Fig. 2a–d Photon-counting with deadtime. a Relative standard
deviation r ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

dN 2h i
p

.

Nh i of the photon count rate N as a
function of the mean count rate ÆNæ, measured using the photon
detection system of our set-up (solid line). The calculation of r is
based on the variance ÆdN2æ as a function of ÆNæ as given by the
fitted fourth-order polynominal shown in plot (b) of this figure. The
dashed line shows the relative standard deviation
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distributed count rate N¢ as a function of the deadtime-affected
mean count rate ÆNæ with ÆN¢æ being the deadtime-corrected mean
count rate. The conversion from ÆN¢æ to ÆNæ follows from the fitted
theoretical function shown in the inset. The inset of this figure
depicts the mean count rate ÆNæ as a function of the deadtime-
corrected mean count rate ÆN¢æ (closed circles, data supplied by
EG&G, Optoelectronics, Dumberry, Canada). The solid line shows
the fitted theoretical function ÆNæ=ÆN¢æt/(1+ÆN¢æs) for a non-
paralyzable detection system (Yu and Fessler 2000). Result of the
fit: t=0.647 ls and s=31 ns (ÆN¢æ in 106s�1). s is the mean detector
deadtime. b Variance ÆdN2æ of the count rate N as a function of the
mean count rate ÆNæ, measured with the photon detection system
used herein (closed circles). The data points come from
measurements performed in a drop of 1 mM TMR solution placed
onto a coverslip. The mean intensity of each successive
measurement was increased step by step by moving the confocal
detection volume into the drop of TMR solution using the piezo-
driven objective holder, beginning at a position within the 160 lm-
thick coverslip (below the drop of TMR solution (Ia=374 kW/
cm2)). Fitting a fourth-order polynomial gave (ÆNæ in 106s�1):
ÆdN2æ=1.04892ÆNæ�0.05101ÆNæ2�0.00158ÆNæ3+0.00008ÆNæ4 (solid
line). The dashed line shows the theoretical variance of a Poisson-
distributed count rate with ÆdN2æ=ÆNæ. c Example taken from one
of the successive measurements, a 1 ms portion of a measurement
of 220 ms duration is shown (ÆNæ=8.41·106s�1). d Histogram of
the measured count-rates (part of the corresponding measurement
is shown in plot (c) of this figure). Fitting a Gaussian function
results in ÆNæ=29.03 and r=3.99 (solid line)
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strongly depends on the SNR of the images, the preci-
sion discussed in this paper indicates the upper limit of
achievable precision. In addition, the measured photon
countrate (Fig. 2c) is well described by a Gaussian dis-
tribution (Fig. 2d) in contrast to photon signals of other
photodetectors (such as photomultipliers) that exhibit
Poisson-statistics.

Image analysis and computer simulations

Analysis of experimental CLSM images and computer
simulations were performed under the Linux operating
system using the IDL computer language (Research
Systems, Boulder, CO, USA). Normalized autocorrela-
tion- and cross-correlation functions of subsequent
images were calculated using IDL subroutines. Software
routines for numerical integration and image-fitting
procedures based on the Levenberg-Marquarth algo-
rithm (Marquarth 1963), were obtained from sources in
the public domain. Simulated fluorescence images of
E.coli bacteria were calculated by adding shot noise to
the theoretical noise-free intensity distribution I(xi,yi)
describing the model object (see below). For a pixel with
coordinates (xi,yi), a random intensity value was gener-
ated from a Poisson distribution with mean intensity
I(xi,yi) at that pixel.

Signal-to-noise ratio (SNR)

The localization precision of the algorithms derived here
strongly depends on the size of the object, its intensity,
the background signal, the resolution of the imaging
system and the pixel size (Bobroff 1986; Cheezum et al.
2001; Thompson et al. 2002). The precision of an algo-
rithm, defined by the standard deviation of a fitted
parameter (Kues et al. 2001), is a measure of the range
within which a parameter can fall. Because a measure-
ment can be precise without being accurate, both the
localization precision and accuracy of an algorithm must
be taken into account. Here, the accuracy of the algo-
rithm is defined as the deviation between the true
parameter and the mean of the parameter subsequently
estimated (for a detailed investigation of the accuracy
and the precision of common tracking algorithms, see
Cheezum et al. 2001).

The quality of the measurement of an object can be
characterized in terms of the signal-to-noise ratio
(SNR). Because of the low background noise of our
APD measurements, the noise (r) in the images was, to a
very good approximation, the noise of the object
intensity itself. A good SNR estimate is therefore

SNR ¼ I0
rsig

; ð1Þ

where I0 is the mean intensity signal amplitude above the
mean background signal IB and rsig gives the standard
deviation of the intensity signal. Localizing a fluorescent

object and simultaneously determining its shape and size
requires that the tracking algorithm accounts for both
the center of the intensity distribution Isig(x,y) and its
particular shape. Precise detection of the edges of an
object requires accurate interpolation of the two-di-
mensional intensity distribution, in particular a sa-
tisfactory interpolation of the lower intensity values at
the edges of the distribution (see below). To characterize
the fluctuations in the fluorescence signal Isig(x,y), its
standard deviation,

rsig ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ði;jÞ2Mobj

Isig i; jð Þ � �Isig i; jð Þ
� �2
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� �

� 1

v

u

u

u

t

; ð2Þ

can be estimated, where card ðMobjÞ is the cardinal
number of the set

Mobj ¼ i; jð Þ 2 x� yj�Isig x; yð Þ>10�2 � I0
� 	

; ð3Þ

in other words the number of elements inMobj . A good
estimate of the average intensity �Isigðx; yÞ can be ob-
tained by fitting (v2- minimization) a theoretical in-
tensity distribution Iobjðx; yÞ to the fluorescence image of
the object (see below). The amplitude of Iobjðx; yÞ above
the background IB (the background constant IB serves as
an additional free fit parameter) further provides an
estimate for the mean signal amplitude I0 (see Eq. 1).
The definition of the set Mobj guarantees that the
computer algorithm only takes into account pixels that
belong to the object. The SNR calculated in the sug-
gested way is thus a measure of the quality of the object
intensity only.

Theory

Recovery of shape, size, orientation and position of
E. coli from fluorescence images by convolution analysis

The idea of this approach is to fit a theoretical intensity
distribution of a finite model object such as a bacter-
ium to a measured fluorescence image of the bacterium
in order to obtain its position, orientation, shape and
size. This result is achieved in three steps. First, a
geometrical model of the bacterium must be assumed.
Second, an expression for the fluorescence image re-
sulting from this model must be derived. This expres-
sion contains all of the parameters for the bacterium’s
position, orientation, size and shape as free parameters.
Third, the theoretical image is fitted to the experi-
mental image (the parameters of the model are varied
until the deviation of the former from the latter is
minimized). In the following, steps one and two are
discussed.

The most plausible way of modeling the geometry of
an E. coli bacterium (Fig. 3a, inset) is by assuming a
cylinder with two hemiellipsoidal caps attached to it (a
‘‘sausage model’’, Fig. 3a). If such an entity has homo-
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geneously accumulated a fluorescent dye of concentra-
tion ÆCæ, the resulting fluorescence image is given by

Iobj x; yð Þ ¼ Ch i
Z

þ1

�1

dx0
Z

þ1

�1

dy0
Z

þ1

�1

dz0vobj x0; y0; z0ð Þ

� IE x� x0; y � y0; z0ð Þ; ð4Þ

in which Iobj(x,y) is the convolution product of the
‘‘characteristic’’ object function vobj(x¢,y¢,z¢) (which is
unity at all points of the fluorescent object and otherwise
zero, Gennerich and Schild 2002), with the function
describing the three-dimensional Gaussian volume from
which the emission intensity is detected, the so-called
detectable emission intensity distribution IE(x,y,z)
(Rigler et al. 1993),

IE x; y; zð Þ ¼ gQIae
�2 x2þy2ð Þ=r2xy½ �e�l z2=r2zð Þ: ð5Þ

g accounts for the overall optical losses of the emission
pathway, including the efficiency of the APD, and Q is
the quantum efficiency of the fluorescent dye. Ia is the
maximum laser intensity in the focus. As the object
under investigation may have any orientation with re-
spect to the coordinate system, we rotate the coordinate
system around the z-axis by the angle /,

~x ¼ x cosuþ y sinu ð6Þ

~y ¼ y cosu� x sinu; ð7Þ

so that the major symmetry axis of the object coincides
with the ~x-axis of the coordinate system ~O (Fig. 3a). The
function describing the object, vobj(x¢,y¢,z¢), is then, due
to its symmetry (see Fig. 3a), conveniently expressed in
cylinder coordinates, x¢,r,h:

vobj x0; r; hð Þ ¼ v ~x0�d1�dx=2;~x0�dx=2½ �ðx0Þ
� v

0;ðdy=2Þf1�ðx0�~x0þdx=2Þ2=d2
1
g1=2½ �ðrÞ

þ v ~x0�dx=2;~x0þdx=2½ �ðx0Þ � v½0;dy=2�ðrÞ
þ v ~x0þdx=2;~x0þdx=2þd2½ �ðx0Þ
� v

0;ðdy=2Þf1�ðx0�~x0�dx=2Þ2=d2
2
g1=2½ �ðrÞ

¼ vobjðx0; rÞ ð8Þ

using the characteristic function

v½a;b�ðcÞ ¼
1 for a6c6b
0 otherwise:




ð9Þ

Equation 8 has three parts, describing the first ellipsoi-
dal cap of the bacterium, the cylindrical middle piece,
and the second cap, respectively. Rewriting Eq. 4 using
the coordinate transformations x¢=x¢, y0 ¼ r cos hþ ~y0
and z¢=rsinh, and substituting Eqs. 5 and 8 leads to the
three expected intensity contributions of the first cap, the
shaft, and the second cap of the bacterium:

Iobjð~x;~yÞ ¼ Ch i
Z

þ1

�1

dx0
Z

þ1

0

dr
Z

2p

0

dhr � vobjðx0; rÞ

� IE ~x� x0;~y � ~y0 � r cos h; r sin hð Þ

¼ Iell1obj ~x;~yð Þ þ Icylobj ~x;~yð Þ þ Iell2obj ~x;~yð Þ ð10Þ

(the full derivations for Iell1obj ð~x;~yÞ , Icylobjð~x;~yÞ and Iell2obj ð~x;~yÞ
are given in Appendix A).

Fig. 3a–c Schematic representation of the three-dimensional
‘‘sausage model’’ and its approximation by a ‘‘slice model’’. a
The position of the object within an image is defined by the
coordinates ð~x0;~y0Þ given in the rotated coordinate system ~O ,
where its orientation is defined by the angle / with respect to the x-
axis of the coordinate system O. The positions of the center, the
front end, the rear end, the right border and the left border of the
approximated sausage model are given by the points p0, p1, p2, p3
and p4, respectively, as indicated in (b) of this figure. Inset: CLSM
images of an E. coli bacterium, stained with MitoTracker Orange.
Image size: 61·51 pixels; pixel size: 89 nm; pixel dwell time:
3.45 ls. b ‘‘Slice model’’. Approximation of the sausage model by
a stack of five rectangular slices and their geometrical parameters. c
Detail: approximation of a hemi-ellipsoidal cap by two slices. For
further details, see text
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Although it is feasible to use Eq. 10 along with the
coordinate transformation (Eqs. 6 and 7) as the function
to be fitted to an experimental image, it is rather time-
consuming due to the numerical evaluation of integrals,
at least on a standard personal computer. Should one try
to use Eq. 10 to calculate the cross-correlation functions
(see below), this problem would become even more
serious. As an example, fitting Eq. 10 to an experimental
image of a fluorescent E. coli of 100·64 pixels takes
three hours on a PC with a Pentium III processor.

We therefore derived an alternative model that allows
much faster evaluation. We approximate the bacterium
by a stack of five rectangular slices, A through E, as
shown in Fig. 3b. For every slice, the length xU, width
yU and height zU=yU, with U 2 M ¼ fA;B;C;D;Eg ,
were obtained by setting two conditions. First, the total
volume of the sausage and slice models must be equal.
This guarantees the same number of photon-emitting
molecules. Second, we required that the portion of the
slice volume situated outside the sausage (Fig. 3c, see
gray areas of the cross-sections drawn) be minimized.
For the sake of simplicity, prior to carrying out the
optimization procedure, we decomposed the sausage
model into three parts and approximated each part se-
parately (the hemiellipsoidal caps by two slices each and
the cylinder by one slice only). For the hemiellipsoidal
caps, the optimization cannot be solved analytically.
However, the equation of the volume of the two slices
situated outside the cap can easily be derived and its
minimum can be found numerically using, for instance,
Mathematica (Wolfram Research, Champain, IL, USA).
Carrying out this optimization, all of the parameters xU,
yU and zU=yU, with U 2 M , can be formulated as a
function of the underlying object parameters d1, d2 and
dy only (see Appendix B).

Using a stack of slices aids all subsequent calculations
considerably, because the integration variables x¢, y¢ and
z¢ of Eq. 4 now become separable. Evaluating Eq. 4 with
a proper object function describing the slice model leads
to

Iobj ~x;~yð Þ ¼
X

U2M

IU ~x; ~yð Þ

¼ IA ~x; ~yð Þ þ IB ~x;~yð Þ þ IC ~x; ~yð Þ

þ ID ~x;~yð Þ þ IE ~x;~yð Þ; ð11Þ

where IU ~x; ~yð Þ, U 2 M, are given in Appendix C. The
five terms of this expression give the intensity con-
tributions from the five slices of the model. Following
the substitutions of the Eqs. 6, 7, 38 and 39 of the co-
ordinate and parameter transformations into the derived
Eq. 11, this function can be directly fitted to an experi-
mental fluorescence image yielding the parameters de-
scribing the position, orientation, shape and size of the
object. By varying the parameters d1, d2, dx and dy of the
underlying model, the object can easily assume the shape
of a sausage, cigar, ellipsoid or sphere.

Recovery of shape, size, orientation and position of
E. coli from fluorescence images by correlation analysis

Consider a microscope image of a homogeneously-
stained bacterium (Fig. 4a). How can the parameters for
its position, orientation, shape and size be obtained by
correlation analysis? We will derive an algorithm that
makes use of both autocorrelation and cross-correlation
image analysis. In the first step, the ACFs of the in-
dividual images are analyzed to obtain, for each image,
the orientation, shape, and size parameters of the object
of interest. This information is then used to calculate a
template for each experimental image. Second, the cross-
correlation functions (CCF) of the subsequent templates
and images are calculated and analyzed to obtain the
positions of the object in the subsequent images and to
re-evaluate the shape and size parameters of the object
of interest (see below).

The experimental ACF of the image under con-
sideration (Fig. 4a) is shown in Fig. 4b. To obtain the
orientation, shape and size parameters of the object, we
calculated the ACF, G(n,g), of the intensity distribution,
Iðx; yÞ, of the slice model (Eq. 11 with Eqs. 6 and 7), in
other words

G n; gð Þ ¼ I x; yð ÞI xþ n; y þ gð Þh i
I x; yð Þh i2

¼ G0 n; gð Þ
I x; yð Þh i2

; ð12Þ

where G¢(n,g) is the unnormalized ACF. The angular
brackets,Ææ, indicate integration over space (Petersen
et al. 1993). As the resulting ACF contains all
free parameters to be obtained, fitting G(n,g) to the
experimental ACF (Fig. 4b) yields the free parameters,
in particular the angle / by which the bacterium is ro-
tated with respect to the x-axis. (Obviously the position
of the object cannot be retrieved in this way.) The noise
components of the original image give rise to a peak at
the origin of the ACF (barely seen in Fig. 4b). The width
of the peak depends on the noise spectrum of the image
and in any case affects the accuracy of the calculated
shape and size parameters. Before evaluating the ACF,
we therefore replaced the central peak by an ‘‘appro-
priate’’ value. This was achieved in three steps. First, the
central value was replaced by the mean of the nearest
neighbors. Second, a 2-D Gaussian distribution was
fitted to the ACF center and its four nearest neighbors
(Cheezum et al. 2001), and third, the central ACF value
was replaced by the maximum of the fitted Gaussian
distribution.

Finally, the parameters obtained from the ACF fit
were used to generate a template of the bacterium cen-
tered at the middle of an image (Fig. 4c).

The next step was to calculate the CCF of the original
image (Fig. 4a) and the template (Fig. 4c), as shown in
Fig. 4d. To obtain the shape and position parameters of
the object, this ‘‘experimental’’ CCF needs to be fitted
using a model CCF that contains these parameters.
Therefore, we calculate the theoretical CCF of the in-
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tensity distribution Ið1Þðx; yÞ of a slice model with free
parameters, and the template , Ið2Þðx; yÞ,

G0 n; gð Þ ¼ Ið1Þ x; yð ÞIð2Þ xþ n; y þ gð Þ
D E

: ð13Þ

As the template derived from the object image and the
object itself have the same orientation / with respect
to the x-axis (Fig. 5), we can start out to derive the
CCF G0 ~n; ~g

� �

as given in the rotated system ~O. As
above, the slice model images comprise the intensity
distributions of the five slices A, B, C, D, and E, in
other words

Ið1Þobj ~x;~yð Þ ¼
X

U2M
Ið1ÞU ~x;~yð Þ ð14Þ

Ið2Þobj ~x;~yð Þ ¼
X

V 2M
Ið2ÞV ~x;~yð Þ; ð15Þ

so that the theoretical CCF is a sum of 25 terms,

G0 ~n; ~g
� �

¼
X

U ;V 2M
G0UV

~n; ~g
� �

; ð16Þ

with

G0UV
~n; ~g
� �

¼
Z

þ1

�1
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þ1

�1

d~xd~y Ið1ÞU ~x;~yð ÞIð2ÞV ~xþ ~n; ~y þ ~g
� �

:

ð17Þ

As an example, let us consider the two central slices of
the models and their contribution to the CCF. After
substituting the object functions of the central portions
(Fig. 5),

vð1ÞC x0; y0; z0ð Þ ¼ v½~xð1Þ
0
�~xð1Þ

C
=2;~xð1Þ

0
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� v½�~zð1Þ
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C
=2�ðz

0Þ ð18Þ

and

vð2ÞC x00; y00; z00ð Þ ¼ v½~xð2Þ
0
�~xð2Þ

C
=2;~xð2Þ

0
þ~xð2Þ

C
=2�ðx

00Þ

� v½~yð2Þ
0
�~yð2Þ

C
=2;~yð2Þ

0
þ~yð2Þ

C
=2�ðy

00Þ

� v½�~zð2Þ
C
=2;~zð2Þ

C
=2�ðz

00Þ ð19Þ

into Eq. 4, we get the respective images of slices C,

Ið1ÞC ð~x;~yÞ ¼ q1
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0
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Z
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0
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~yð1Þ
0
�~yð1Þ

C =2
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Fig. 4a–c Correlation image analysis. a Intensity distribution of an
E. coli bacterium, stained with MitoTracker Orange. The
corresponding CLSM-image is shown in the inset. Image size:
100·64 pixels ; pixel size: 88 nm; scan time per frame: 64.64 ms. b
ACF of the image shown in (a). Fitting the theoretical ACF G(n,g)
(Eq. 33 together with Eqs. 6 and 7, with d1

(1)=d1
(2), d2

(1)=d2
(2),

dx
(1)=dx

(2) and dy
(1)=dy

(2)) gave: dx=2196.7 nm, d1=576 nm,
d2=448.2 nm, dy=1001.2 nm and /=0.556. These data result in
an E. coli length of d=d1+dx+d2=3220.8 nm. c Template for the
E. coli bacterium; in other words the intensity distribution Iobjðx; yÞ
(Eq. 11 with Eqs. 6, 7, 38 and 39) of the slice model calculated
using the parameters obtained from the ACF analysis. d CCF of
the CLSM image shown in (a) and its template shown in (c)
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Ið2ÞC ð~x;~yÞ ¼ q2
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where q1=gQIaÆC1æ and q2=gQIaÆC2æ, with ÆC1æ and
ÆC2æ being the respective dye concentrations in the slice
models. Substituting Eqs. 20 and 21 into Eq. 17 results
in the CCF component of these slices,
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with ~dCC¼~xð2Þ0 �~xð1Þ0 and ~dy¼~yð2Þ0 �~yð1Þ0 . Finally, this
equation can be reduced to an equation that requires
the calculation of exponential and error functions
only:

G0CC ~n; ~g
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¼ q1q2
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where

A e1; e2ð Þ ¼ ~n� ~dCC þ e1
xð1ÞC

2
þ e2

xð2ÞC

2

 !

ð24Þ

B e1; e2ð Þ ¼ ~g� ~dy þ e1
yð1ÞC

2
þ e2

yð2ÞC

2

 !

: ð25Þ

The other 24 terms of the CCF G0 ~n; ~g
� �

(Eq. 16) can be
obtained from Eq. 23 by using the appropriate slice
distances. For example, for the case of the CCF com-
ponent resulting from the intensity distributions of slice
A of the first object and slice D of the second one (see
Fig. 5),

~dAD ¼ ~dCC þ
xð1ÞC

2
þ xð1ÞB þ

xð1ÞA

2
þ xð2ÞC

2
þ xð2ÞD

2
: ð26Þ

By expressing the distances of the slices in the sug-
gested way, the parameter ~dCC will serve as the only
parameter that accounts for the displacement between
both slice models along the ~x-axis. The parameter ~dy ,
describing the displacement between both models with
respect to the ~y-axis, is identical for all slices A
through E and does not need to be replaced. Finally,
the size parameters xC

(1), xC
(2), yC

(1)=zC
(1) and yC

(2)=zC
(2)

have to be replaced by the corresponding parameters
xA
(1), xD

(2), yA
(1)=zA

(1) and yD
(2)=zD

(2) of the slices A and D
of the models.

Up to this point we have used the unnormalized CCF
G0 ~n; ~g
� �

(Eq. 16). The normalized CCF G ~n; ~g
� �

is given
by

G ~n; ~g
� �

¼
P

U ;V 2MG0UV
~n; ~g
� �

P

U ;V 2M Ið1ÞU ð~x;~yÞ
D E

Ið2ÞV ð~x; ~yÞ
D E ð27Þ

Fig. 5 Schematic representations and parameters of two displaced
slice models. Both objects have the same orientation with respect to
the x-axis of the coordinate system O. The intensity distributions of

the objects are denoted by Ið1Þobjð~x;~yÞ and I
ð2Þ
objð~x; ~yÞ, respectively

188



with
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(i=1,2) and thus
Using the definitions

g0UV
~n; ~g
� �

¼ 25

q1q2pð5=2Þr5xyr2z
G0UV

~n; ~g
� �

ð30Þ

and

G0 ¼
rxy

4
ffiffiffi

p
p
 

X

U ;V 2M
xð1ÞU xð2ÞV yð1ÞU yð2ÞV erf

h

zð1ÞU

.

ffiffiffi

2
p

rz

� �

#

� erf zð2ÞV

.

ffiffiffi

2
p

rz

� �h i

!�1

; ð31Þ

simplifies the expression for G ~n; ~g
� �

,

G ~n; ~g
� �

¼ G0

X

U ;V 2M
g0UV

~n; ~g
� �

: ð32Þ

This CCF does not depend on the constants q1=gQIaÆ-
C1æ and q2=gQIaÆC2æ because the constants cancel in
Eq. 30. Evaluating normalized experimental correlation
functions is therefore useful if the ACFs and CCFs of
images of objects with different dye concentrations are to
be compared. With the factor G0 as an additional fit
parameter, however, G ~n; ~g

� �

(Eq. 32) can be used to-
gether with the coordinate and parameter transforma-
tions (Eqs. 6, 7, 38 and 39) to analyze both experimental
unnormalized and normalized ACFs and CCFs.

Finally, we must account for the fact that all ex-
perimental images show some background noise around
the actual object, leading to non-zero offsets in the ex-
perimental ACF and CCF, respectively (Fig. 4b, d). The
model CCF obviously does not include such noise. To fit
the model CCF to the data CCF we therefore add a
constant term gB to the CCF derived above to account
for this offset:

G n; gð Þ ¼ gB þ G0

X

U ;V 2M
g0UV n; gð Þ: ð33Þ

Results and discussion

Geometry choice for the E. coli model

Of the two models derived above (the sausage model
and the slice model), algorithms using the slice model

are markedly faster. However, the slice model can
only be preferred if the error introduced by approx-
imating the sausage model by slices is acceptable.
As shown in Appendix D, the slice model gives
reliable results when used to determine the absolute
length of sausage-like objects such as E. coli bacteria,
or when used to detect relative length and width
changes. In the following analysis we therefore use the
slice model.

The method of choice: convolution versus correlation
analysis

Consider the E. coli shown in Fig. 4a, and an x-sec-
tion through it at y=30 (Fig. 6a, noisy curve). The
fluorescence intensity distribution of the slice model
(Eq. 11 including Eqs. 6 and 7) is then fitted to the
bacterium’s image, and a section through the resulting
function, Iobjðx; yÞ, at y=30 is given by the
continuous curve in Fig. 6a. Obviously, the question
here is how well the size and the shape are approxi-
mated. Before answering this we applied the second
method, using the auto- and cross-correlation
functions as outlined in the ‘‘Theory’’ section. The
continuous curve in Fig. 6b shows the experimental
CCF resulting from the correlation of the original
image and the template function (the template built
via the ACF). On the other hand, the dashed curve of
Fig. 6b is the model CCF calculated from a template
with fixed parameters and a template with free para-
meters to be fitted. Fitting the model CCF G(n,g)
(Eq. 33 with Eqs. 6 and 7) to the experimental one
yields the free parameters. The fit appears to follow
the data in a satisfactory way. Here again the question
is how well the bacterium’s size and the shape are
approximated.

It is intrinsically impossible to give an answer to this
question relying only on calculations like those shown
above. Instead one has to start out with an object of
known geometrical parameters. The procedure for
determining the precision of either algorithm using a
known object is as follows. First, one deterministic im-
age is generated by calculating the intensity Iobjðx; yÞ for
a slice model (Eq. 11 with Eqs. 6 and 7) with zero
background (IB=0), assuming known, constant, and
morphologically realistic E.coli parameters. We chose an
object of �3.2 lm length and �1 lm width with its long
axis parallel to the x-axis of the image, located at the
center of the image (for parameters used, see legend of
Fig. 7). Second, Poisson noise is added to the determi-
nistic image so that the resulting test image has a well-
known SNR (calculated according to Eq. 2), and third,
this procedure is repeated for a number of images (here
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n=100). In this way we obtained a sequence of images of
fluorescent objects, all with basically the same shape and
size, with random noise superimposed, and with a con-
stant mean SNR. Sets containing 100 images each were
then generated for a number of different SNR values. To
obtain the object parameters (see below) from 100
images of 96·30 pixels took the correlation algorithm
�50 hours on a PC with a Pentium III processor,
whereas the convolution algorithm needed 30 minutes
for the same task. We should point out that our im-
plemented IDL algorithms were not optimized for fast
image processing (so the use of thorough matrix-based
image fitting algorithms would reduce the processing
time markedly). Another future improvement will come
from an increase in PC processor speed.

In the next step, the convolution and correlation
methods were applied to each of the 100 images of a set,
thereby resulting in 100 values per parameter and algo-
rithm, as well as one average value and one standard
deviation for each parameter. Here it is important to
regard the precision and the accuracy of an algorithm
separately. The standard deviation r is a measure of the
range within which a fitted parameter can fall, it de-
scribes the precision of the algorithm. The accuracy of
both algorithms for detecting the characteristic object
points p0(x), p0(y), p1(x), p2(x), p3(y), p4(y) (see Fig. 3b),
the length d and the width dy of the object, are obtained
by calculating the bias of the detected parameters (the
deviation of the mean values of the measured parameters
from the known exact parameters). We then plotted r
and the bias of the object points, the length d and the
width dy as a function of the SNR ratio (Fig. 7a and b).
The algorithms were applied as follows.

As described in the ‘‘Theory’’ section, the convolu-
tion method is based on fitting a theoretical intensity
distribution of a model object to the measured image of
the object of interest. Here, the intensity distribution
Iobjðx; yÞ (Eq. 11 with Eqs. 6 and 7) of the slice model
was fitted to each of the successive simulated images.
The free parameters to be fitted were the length d1=d2 of
the caps of the object, the length of the middle part dx,
the object’s diameter dy and the object’s center
p0=(x0,y0) (Fig. 3b) (both the background constant
IB=0 and the angle /=0 were fixed). These parameters
were then used to calculate the object points of interest.

The correlation method was applied as described
above. First, the ACF of an image was calculated and its
central peak at the origin was replaced by an appropriate
value as outlined in the ‘‘Theory’’ section. The theoretical
ACF (Eq. 33 with Eqs. 6 and 7) was then fitted to the
resulting experimental ACF. The free parameters were
the size parameters d1

(1)=d1
(2)=d2

(1)=d2
(2), dx

(1)=dx
(2) and

dy
(1)=dy

(2) of the object (see Fig. 5) (here, the displace-
ment parameters ~dCC ¼ 0 and ~dy ¼ 0, the background
constant gB=0 and the angle /=0 were fixed). The re-
sulting object parameters were then used to calculate the
intensity distribution Iobjðx; yÞ of the template (see
above). Second, the CCF of the template and the simu-
lated image was fitted by the theoretical CCF G(n,g)

(Eq. 33 with Eqs. 6 and 7) to obtain the position of the
object and to re-evaluate its size parameters. The free
parameters were the parameters d1

(1)=d2
(1), dx

(1) , dy
(1) of the

object and the displacement parameters ~dCC and ~dy . The
parameters d1

(2)=d2
(2), dx

(2) and dy
(2) of the template,

Fig. 6a–b Comparison of convolution and correlation analysis. a
x-sections through the experimental intensity distribution of the E.
coli bacterium shown in Fig. 4a (noisy trace) and through the fitted
theoretical distribution Iobjðx; yÞ (Eq. 11 with Eqs. 6, 7, 38 and 39)
of the slice model (smooth solid line), both at y=30. Result of the
fit: dx=2129.2 nm, d1=664.6 nm, d2=445.4 nm, dy=964.2 nm
and /=0.5609 (v2=17946.66). These data result in an E. coli
length of d=3239.3 nm. Fitting the intensity distribution Iobjð~x;~yÞ
(Eq. 10 with Eqs. 6 and 7) of the sausage model gave:
dx=2152.7 nm, d1=620.5 nm, d2=467.4 nm, dy=1009.1 nm and
/=0.5611 (v2=17190.81). In this case, the E. coli length is
d=3240.6 nm. b n-sections through the maximum of the
experimental CCF shown in Fig. 4d (solid line) and through the
fitted theoretical CCF G(n,g) (Eq. 33 with Eqs. 6 and 7, dashed
line). Result of the fit: dx=2186.8 nm, d1=613.9 nm,
d2=428.6 nm, dy=1002.1 nm and /=0.5558 (v2=1.7759·10�6).
These data result in an E. coli length of d=3229.3 nm
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the background constant gB=0 and the angle /=0 were
fixed. The characteristic object points p0 to p4 were then
calculated based on the known position of the template
and the resulting displacement and size parameters of the
object.

The results of these calculations are shown in Fig. 7a
and b, and can be summarized as follows:

1. The precision of either algorithm strongly increases
(r decreases) with increasing SNR

2. The object’s diameter dy can be determined more
precisely than its length d (convolution analysis: 3.8-
fold more precisely; correlation analysis: 5.3-fold)

3. The left and right borders p3(y) and p4(y) of the object
are detected more precisely (smaller r), than the front
and rear end p1(x) and p2(x) (convolution analysis:
3.4-fold more precisely; correlation analysis: 4.6-fold)

4. The position of the object’s center with respect to the
y-axis (p0(y)) can be determined more precisely than
the object’s center with respect to the x-axis (p0(x))
(convolution analysis: 2.3-fold more precisely; corre-
lation analysis: 3.1-fold)

5. The position of the object’s center p0(x) can be de-
tected more precisely than the positions p1(x) and
p2(x) of the front end and rear end of the model
(convolution analysis: 2.6-fold more precisely; corre-
lation analysis: 2.3-fold), and the position of the ob-
ject’s center p0(y) can be determined more precisely
than the positions p3(y) and p4(y) of the left and right
border (convolution analysis: 1.8-fold more precisely;
correlation analysis: 1.6-fold)

6. The convolution method results in smaller fluctua-
tions for the length d (1.3-fold smaller), the positions
p1(x) and p2(x) of the front end and rear end (1.3-fold
smaller) and the object’s center p0(x) (1.5-fold smal-
ler) than the correlation method

7. The object’s diameter dy resulting from the correla-
tion method shows smaller fluctuations than the
diameter resulting from the convolution method (1.1-
fold smaller)

Taken together, the results (Fig. 7a) indicate that
the precision of either algorithm strongly depends on
both the SNR of the images and the size of the object
(compare the left and right parts of Fig. 7a). While
the convolution algorithm leads to a more precise

Fig. 7a–d Summary of precision and bias for the convolution and
correlation algorithms analyzed by computer simulations (ACA:
autocorrelation analysis; CA: correlation analysis; CPA: convolu-
tion product analysis). a Precision of both algorithms as a
function of the SNR for determining the indicated parameters of
the model object. Parameters used: d1=d2=5.5 pixels, dx=25 pix-
els, dy=11 pixels and /=0; pixel size: 88 nm; image size:
96·30 pixels (the corresponding bias of the measured parameters
is shown in (b)). b Bias (deviation between the mean values of the
measured parameters and the known exact parameters as a
function of SNR). c Precision as a function of object size. Here,
the underlying object was a box of length dx and width dy=11. Its
intensity distribution was calculated based on the intensity
distribution Iobjðx; yÞ (Eq. 11 with d1=d2=0) of the slice model.
The mean SNR of the simulated images was 11. The image height
was 30 pixels, whereas its width was adapted to the current box
length dx (the ratio of image height and box width dy was equal to
the ratio of image width and box length dx for all images
simulated). d Corresponding bias of the determined parameters as
a function of box length dx. The parameter names corresponding
to the colored solid and dashed data traces shown left and right
of (b), (c) and (d) are given on the left and right sides of (a) of
this figure, respectively

b

191



estimate for the object length d, the correlation algo-
rithm results instead in a more precise diameter dy.
How can this result be explained? The precision of the
correlation algorithm depends on the slope of the
correlation function (Walker et al. 1994). For instance,
increasing the object length in the x-direction (while
the width is kept constant) results in a broader and
shallower correlation function in the x-direction. This
effect reduces the detection precision of the edges of
the underlying object which are perpendicular to this
axis. This does not apply, however, to the convolution
algorithm. An increase, for example, in the length dx
of the object’s middle part (see Fig. 3a) (while all
other parameters are kept constant) leaves the
intensity distribution at the edges of the object
unchanged provided that the diameter of the confocal
detection volume (or the point-spread function of the
microscope) is small compared to the length dx; in
other words 2rxy<dx. In this case, the detection
precision of the object’s rear and front end p1(x) and
p2(x) (the positions of the edges perpendicular to the
x-axis) should be unchanged, whereas the detection
precision of the object’s left and right border p3(y) and
p4(y) (the positions of the edges parallel to the x-axis)
should increase. The latter effect is a direct con-
sequence of the increased number of data points that
form the borders of the object parallel to the x-axis.

To confirm these statements we analyzed the detec-
tion precision of the characteristic object points p0(x),
p1(x), p2(x), p0(y), p3(y), p4(y), as well as the length dx
and the width dy of the object as a function of the length
dx of the underlying object. To allow a direct compar-
ison between the detection precision of the edges along
the x- and y-axes, we analyzed simulated images of a
simple theoretical dye-filled box of length dx and width
dy. For each parameter combination we simulated a set
of 500 images with a mean SNR of 11 (for parameters
used, see legend of Fig. 7) and applied the convolution
and correlation algorithm.

The results in Fig. 7c obviously confirm that the de-
tection precision of the object points p0(x), p1(x) and
p2(x) with respect to the x-axis resulting from the con-
volution method does not depend on the length dx of the
underlying object (dx>2rxy), whereas the precision re-
sulting from the correlation method decreases (r in-
creases) with increasing length dx (left part of Fig. 7c).
Also, the detection precision of the object points p0(y),
p3(y) and p4(y) with respect to the y-axis increases with
increasing length dx for either algorithm (right part of
Fig. 7c). As expected, the corresponding bias of the
measured parameters is significantly smaller in this case
compared to the bias of the simulations above (Fig. 7b
versus Fig. 7d) because of the higher number of images
simulated for each parameter combination (500 instead
of 100). Also, the bias for the measured parameters is
within the same range for either algorithm (Fig. 7d).

From the data shown in Fig. 7c (left part) it is
apparent that the length dx resulting from the correla-
tion method shows smaller fluctuations than the length

resulting from the convolution method if the length of
the object is smaller than �7.5rxy (rxy=2.5 pixels). For
dx<5.5rxy and dx<3.5rxy, respectively, this is also true
for the object points p1(x) and p2(x) and the object’s
center p0(x), respectively (Fig. 7c, left part). Taken to-
gether, the correlation algorithm results in more precise
estimates than the convolution algorithm if the diameter
of the object is smaller than about four to five times the
waist radius rxy.

This result suggests that when tracking small objects
(small fluorescence-labeled vesicles or fluorescent mole-
cules), the two-step correlation algorithm presented here
is the method of choice in terms of precision. For ex-
ample, analyzing a set of 500 simulated images
(rxy=2.5 pixels) of a stationary dye-filled box with a
length and width of only one pixel (with a typical pixel
size of 100 nm this would correspond to the size of a
small vesicle), results in 1.5-fold more precise object
positions p1(x), p2(x), p3(y), p4(y), length dx and width
dy, and in a 1.24-fold more precise object center p0(x)
and p0(y), respectively.

The most plausible explanation for this outcome is
the noise reduction due to the correlation analysis,
which has obviously a larger effect in the case of small
objects. For larger objects, the reduction in the preci-
sion due to the decreased slope of the correlation
function dominates as discussed above. In contrast to
the common cross-correlation algorithms that use a
fixed template (or kernel), each image of a sequence has
its own optimized template, and, therefore, the filter
effect due to the cross-correlation calculation is opti-
mal. As outlined above, the template’s parameters are
derived from the ACF analysis. (Alternatively, the
template could be determined using the convolution
method, the advantage there being speed.) We have
shown (Fig. 7b) that accurate object parameters can be
obtained from the ACF analysis despite the replace-
ment of the central ACF peak by an appropriate value,
as described in the ‘‘Theory’’ section. Ideally, the
intensity distributions of the wild-type object and the
templates of the object have the same spectra. There-
fore, a part of the superimposed noise spectrum is
suppressed in an optimal way. Because the theoretical
correlation function G(n,g) (Eq. 33, together with 6 and
7) does not contain any noise (it instead contains the
background constant gB), the fit algorithm results in
more precise parameters. An increased object diameter
leads, however, to a decreased correlation function
slope and thus to a reduced edge detection precision.
This effect is contrary to the noise removal performed
by correlation analysis.

At this point in our study, the appropriateness of the
slice model has been demonstrated, the convolution
analysis has been found to give more precise estimates
than the correlation method for the front and rear end of
the bacteria, and it has been shown that the precision of
either algorithm increases with increasing SNR. These
results now allow us to analyze image sequences of
E. coli using the convolution algorithm.
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Image analysis of stationary E. coli

As experimental examples, we took sequences of sta-
tionary E. coli, with sequences taken at different levels of
E. coli staining. Figure 8a shows the first image of a
sequence of 100 images and (b) shows the intensity
Iobjðx; yÞ of the slice model fitted to it. A x-section
through the experimental and theoretical intensity dis-
tribution at y=45 is shown in Fig. 8c. The fitting pro-
cedure easily yields values for the five points indicated in
the inset of Fig. 9a, namely the center, the front end, the
rear end, the right border and the left border of the
bacterium, indicated by p0, p1, p2, p3, p4. When these
values are plotted for the 100 images of a sequence
(Fig. 9a, right), the fluctuations of these points can
hardly be noticed. In (b) of this figure we therefore
plotted the trajectories of the five characteristic points,
p0, p1, p2, p3, p4, of the bacterium at higher magnifica-
tion, leaving their relative orientation unchanged (their
distances from each other are therefore not to scale).
This figure clearly demonstrates (i) that while the center
(p0) exhibits the smallest fluctuations, the front (p1) and
rear end (p2) exhibit the largest ones, and (ii) that the
fluctuations are anisotropic, the fluctuations in the di-
rection of the bacterium’s major symmetry axis being
markedly larger (Fig. 9c). Table 1 gives the standard
deviations of the five points in the ~x - and ~y -directions of
the coordinate system ~O. Carrying out the analysis using
the additional constraint d1=d2=dy/2, (with the same
number of fit parameters for the length and the width of
the object) results in slightly smaller standard deviations
for the front and rear end (r~xðp1Þ=13.2 nm and
r~xðp2Þ=15.5 nm), while the values for the other para-
meters (see Table 1) do not change significantly.

When the same experiment was carried out at a higher
level of E. coli staining and at a fluorescence emission
where the avalanche photodiode saturates, the shape of
the image (Fig. 10a) aswell as that of themodel (Fig. 10b)
changes characteristically in that the maxima become
approximately flat planes. A y-section through the ex-
perimental and theoretical intensity distribution at x=37
is shown in Fig. 10c. An additional reason for the
pronounced flat intensity maximum is the larger diameter
of theE. coli compared to the diameter of the bacteriumof
the first experiment, shown in Fig. 9a. Plotting the same
five points as before (Fig. 11a and b) clearly indicates
that the precision at which the points can be determined
is higher at higher photon count rates (Table 2).

Although the detection of photons at count rates
above 1 Mcps is in the non-linear range of the APD
(Fig. 2a, inset), the bias caused by the non-linearity of
the APD for detecting relative displacements is small
compared to the experimentally-achievable precision.
Correcting for the non-linearity, in other words calcu-
lating the deadtime-corrected intensity distribution
I0objðx; yÞ (see legend of Fig. 2a) from the fitted intensity
distribution shown in Fig. 10b, and re-evaluating the
resulting corrected distribution with the intensity dis-
tribution Iobjðx; yÞ demonstrates that small symmetric

Fig. 8a–c CLSM measurement and convolution analysis of a
stationary E. coli bacterium stained with MitoTracker Orange. a
Intensity distribution of the bacterium (first image of a sequence of
100 measured images). Image size: 98·64 pixels; pixel dwell time:
3.45 ls; pixel size: 88 nm. b Fitted theoretical intensity distribution
Iobjðx; yÞ of a slice model (Eq. 11 with Eqs. 6, 7, 38 and 39). Result
of the fit: dx=2448.9 nm, d1=495.4 nm (d2=d1, fixed),
dy=804.5 nm, IB=0.85308, ~x0 =1.525 pixels; ~y0 =�62.165 pixels
and /=2.21297 (v2=13005.65). These data result in an E. coli
length of d=3439.7 nm. c x-sections through the experimental and
fitted intensity distributions at y=45. The mean SNR of the images
was 11.21±0.43
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and asymmetric length changes can still be detected
precisely. This can be illustrated as follows: let us first
increase the length of the model object by
Dd=Ddx=0.1 pixels (all other parameters kept un-
changed; for parameters used, see legend of Fig. 10),
then re-calculate both the corresponding theoretical
distribution Iobjðx; yÞ and its deadtime-corrected
intensity distribution I0objðx; yÞ, and finally fit the former

and the resulting deadtime-corrected intensity distribu-
tion using the distribution Iobjðx; yÞ of the slice model.
This results in a detected length increase for the object of
Dd=0.093 pixels. For a pixel size of 88 nm, this devia-
tion corresponds to a few Angstroms and is thus not
significant here.

As pointed out in the ‘‘Methods’’ section, the dead-
time of the APD results in an increased relative standard
deviation of the photodetector count rate and therefore
in a reduced SNR of the experimental images. Fur-
thermore, small thermal fluctuations of the E. coli
membrane and small movements of the bacterium itself
might have contributed to the measured precision. The
measured standard deviations for the object points
(Table 1 and 2) thus reflect the upper limits for the
precision that can be achieved. Taken together, these
results clearly demonstrate that the position and size
parameters of objects such as bacteria can be determined
well below the resolution limit of the objective.

Conclusions and perspective

In this paper we have provided algorithms that allow the
tracking of finite microscopical regularly shaped objects,
determining their position, orientation and size para-
meters. Whereas the tracking of point sources has been
dealt with in detail (see, for example, Saxton and Ja-
cobson 1997), simultaneous measurement of position,
shape and size parameters of finite living particles at the
nanometer scale has as yet not been reported. In order to
demonstrate the precision of the algorithms we restricted
our study to stationary objects, but the algorithms can,
without any change, be applied to moving particles.
However, caution is necessary when applying the algo-
rithms to images of objects with a component of
movement along the optical axis, as a vertically-tilted
object would appear shorter than it actually is. Hence,

Table 1 Standard deviations r~x and r~y of the localized object
points p0 to p4 shown in Fig. 9a and b

Object point p0 p1 p2 p3 p4

r~x (nm) 8.4 21.6 18 8.9 8.1
r~y (nm) 4.3 7.3 9.2 6.1 6.2

Fig. 9a–c Result of the convolution analysis of an image sequence
taken of an immobile E. coli bacterium (the first image of the
sequence is shown in Fig. 8a).a Trajectories of the estimated
positions of the characteristic object points p0, p1, p2, p3 and p4
(middle part of the figure). A schematic of the model object with
the indicated object points is drawn on the left part of the figure. b
Trajectories of the positions at higher magnification with un-
changed relative orientation (the distances between the trajectories
of the characteristic points are not to scale). c Distributions of the
measured distances, ~x00 ¼ ~x0 � ~x0h i and ~y00 ¼ ~y0 � ~y0h i , from the
mean localized object center p0h i ¼ ~x0h i; ~y0h ið Þ with respect to
the ~x - and ~y -axes of the rotated coordinate system ~O

b
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biological processes that can easily be investigated
would be, for instance, the axonal or dendritic transport
of vesicles or mitochondria along microtubules oriented
parallel to the cover slip. Researchers in this field might
find our algorithms particularly useful because they al-
low, for the first time, the study of sub-microscopic
movement-related changes of size and shape of the ob-
jects under investigation. The feasibility of such mea-
surements, however, will depend on the velocity of the
underlying process. For a given process, a sufficiently
small image aquisition time will be necessary to prevent
apparent size changes in the object due to motion blur.

Fig. 11a–b Results from the convolution analysis of an image
sequence taken of a stationary E. coli bacterium at high
fluorescence emission (the first image of the image sequence is
shown in Fig. 10a). a Trajectories of the estimated positions of the
object points p0, p1, p2, p3, p4. b Higher magnification with
unchanged relative orientation (distances between the characteristic
points not to scale)

Table 2 Standard deviations r~x and r~y of the localized object
points p0 to p4 shown in Fig. 11

Object point p0 p1 p2 p3 p4

r~x (nm) 3.7 8.7 6.7 3.7 4.1
r~y (nm) 1.9 4.1 4.5 3.8 4.6

Fig. 10a–c CLSM measurement and convolution analysis of an
immobile E. coli bacterium stained with MitoTracker Orange.a
Intensity distribution of the bacterium (first image of a sequence of
120 measured images). Image size: 100·64 pixels; pixel dwell time:
3.4 ls; pixel size: 88 nm. b Fitted theoretical intensity distribution
Iobjðx; yÞ of a slice model (Eq. 11 with Eqs. 6, 7, 38 and 39). Result
of the fit: dx=2294.3 nm, d1=826.7 nm (d2=d1, fixed),
dy=1363.2 nm, IB=0.7036, ~x0 =49.811 pixels; ~y0=0.1377 pixels
and /=0.647 (v2=20138.71). These data result in an E. coli length
of d=3947.8 nm. c y-section through the experimental and fitted
intensity distribution at x=37 . The mean SNR of the images was
16.34±0.37
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The algorithms were quantitatively compared to each
other using computer simulations. The correlation al-
gorithm is based on both the autocorrelation analysis of
an image and the cross-correlation analysis of an image
and its individually-optimized template (calculated from
its ACF). Taking into account the entire two-dimen-
sional distribution of the correlation functions, the
correlation algorithm results in more precise parameters
than the convolution algorithm if the object to be
tracked has a diameter smaller than about four to five
times the waist radius rxy, whereas the convolution al-
gorithm is more precise if the size of the object exceeds
this value. The choice of the appropriate algorithm is
therefore a question of the object’s size. As the con-
volution algorithm incorporates the frequently-used
Gaussian fit algorithm (Anderson et al. 1992; Schütz
et al. 1997; Yildiz et al. 2003), it can further be pointed
out that the correlation algorithm introduced is also
superior to the Gaussian fit algorithm, leading to more
precise estimates in cases where single fluorescent mo-
lecules are to be tracked. This is not necessarily true,
however, for other correlation algorithms (Cheezum
et al. 2001), that take into account only the peaks of the
two-dimensional cross-correlation functions.

The precision by which the object‘s size and position
parameters can be determined is remarkable. At high
intensity signals, the precision can be driven to the lower
nanometer range. The quality of the fit of the above
delineated models to the experimental data depends on
the number of photons gathered and the signal-to-noise
ratio. With respect to the photon detection efficiency and
the negligible dark-count rate, the APD is an ideal
sensor at low count rates. However, as we demonstrated
with our experiments, the smaller dynamic range of the
APD becomes limiting at count rates above 1 MHz. To
avoid deadtime corrections and to further increase the
signal-to-noise ratio of the images and thus the precision
of the measurements, the use of a low-noise PMT or
back-illuminated CCD-camera (in combination with
wide-field microscopy) is recommended when measuring
predominantly high intensity signals.

We have compared the sausage model and the slice
model in detail and demonstrated that the slice model is
an excellent approximation of a sausage-like object, such
as an E. coli bacterium, if the geometrical parameters of
the slices are properly chosen. As Cheezum et al. (2001)
pointed out, there is usually no a priori information
concerning the precise shape of the object to bemeasured.
Imperfections in the shape could potentially lead to un-
precise measurements. Generally, the best fitting geome-
trical model has to be adopted. Further, inhomogeneous
staining of the object under investigation (especially at
the object boundaries) could bias themeasurement. It will
therefore be necessary to optimize the labeling technique
(using exogenous dyes or fluorescent genetic markers) to
achieve sufficient homogeneous object staining and to
find out the most appropriate model for every object
under investigation. However, the sausage model can be
applied to a number of regularly-shaped organelles.

Choosing a model consisting of a stack of slices thus has
two advantages. First, it is useful for different object
shapes. Second, processor time is markedly reduced due
to the separation of integration variables.

Beyond providing algorithms for the measurement
and tracking of finite microscopical objects, we show
that a precision in the low nanometer range can be
achieved in vitro from the properties of the optical
configuration of our set-up. The achievable tracking
precision for in vivo measurements, however, will de-
pend mainly on the labeling technique (fluorescence
yield of the organelle under investigation versus back-
ground fluorescence from the surrounding cytoplasm
and the cytoskeleton), the distance between labeled or-
ganelles, and the quality of the photon detection system.
We reason that, when using both an optimized micro-
scopy set-up and fluorescent genetic markers, signal-to-
noise ratios between 5 and 20 and even beyond will be
achievable. Thus a tracking precision down to a few
nanometers could be achievable when studying, say,
organelle transport in axons and dendrites of cultured
neurons. Using our finite-particle tracking (FPT) algo-
rithms, for instance in the motor protein field, will pre-
sumably allow the measurement of movement-related
size changes of intracellular cargoes such as mitochon-
dria or vesicles.

Appendix A

Derivation of Eq. 10 leads to the three intensity con-
tributions of the first cap, the shaft, and the second cap of
the model bacterium: Iell1obj ð~x; ~yÞ , Icylobjð~x;~yÞ and Iell2obj ð~x;~yÞ,
respectively,
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and

Iell2obj ð~x; ~yÞ ¼q
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where

q ¼ Ch igQIa: ð37Þ

Appendix B

Carrying out the numerical optimization procedure for
the hemiellipsoidal caps leads to the following para-
meters for the slices:

xA ¼0:305579� d1
xB ¼0:585352� d1
xD ¼0:585352� d2
xE ¼0:305579� d2
yA ¼yE ¼ 0:593244� dy

yB ¼yD ¼ 0:843075� dy ;

ð38Þ

whereas the width

yC ¼
ffiffiffi

p
p

dy



2 ð39Þ

of the middle slice of length xC=dx (see Fig. 3b) fol-
lows directly from the requirement that the cylinder
and slice volume be identical, in other words p dy

2dx/
4=yC

2 dx.

Appendix C

The five intensity distributions describing the the slice
model (Eq. 11), are given by
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and
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Appendix D

The slice model can only be preferred if the error in-
troduced by approximating the sausage model by slices
is acceptable. The question to be answered here is
therefore: how well does the slice model approximate the
sausage model?

Let us adopt the sausage model assuming morpho-
logically-realistic E.coli parameters, and then calculate
the resulting fluorescence intensity Iobj(x,y) according
to Eq. 10 (Fig. 12a). A cross-section at y=32 through
its maximum is shown by the continuous curves shown
in (b) and (c) of this figure. Then we fit the intensity
distribution Iobjðx; yÞ (Eq. 11 with Eqs.38 and 39) of
the corresponding slice model to the calculated
intensity distribution of the sausage model. A section
through this function at y=32 gives the dashed curve
shown in Fig. 12b. Though the maximum amplitude of
the sausage object is underestimated by the slice model
fit, the front and rear edge of the intensity distribution
are almost perfectly fitted (Fig. 12b, dashed versus

continuous curve) due to the good approximation of
the bacterium’s caps by the stack of slices (Fig. 3c). As
the front and rear edge of the intensity distribution are
well described by the intensity distribution of the slice
model, the resulting length parameter of
d=36.018 pixels is in good agreement with the length

Fig. 12a–c Intensity distribution of the sausage model and its
approximation by the intensity distributions of a slice and a box
model, respectively.a Theoretical distribution Iobj(x,y) (Eq. 10,
x ¼ ~x and y ¼ ~y) of the sausage model, calculated with the
parameters: dx=25 pixels, d1=d2=5.5 pixels, dy=11 pixels, /=0
and p0=(49,32). E. coli length: d=36 pixels. b x-section through
the intensity distribution of the sausage model shown in (a) (solid
line) and through the fitted intensity distribution Iobjðx; yÞ (Eq. 11
with Eqs. 6, 7, 38 and 39) of the slice model (dashed line) both at
y=32. Result of the fit: dx=24.7 pixels, d1=5.66 pixels,
d2=5.658 pixels, dy=10.492, x0=49 pixels, y0=32 pixels and /
=0 (v2=5456.97). These data result in an object length of
d=36.018 pixels.c Fitting the intensity distribution of a simple
box model (Eq. 11 with d1=d2=0) gave (dashed line):
dx=32.886 pixels, dy=10.3 pixels and /=0 (v2=15250.22)

c
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of d=36 pixels of the underlying sausage model. For a
given pixel size of 88 nm, this corresponds to a devia-
tion of 1.6 nm, much smaller than the experimental
precision that can be achieved under our conditions
(see below).

The negligible error of the slice model approximation
suggests that a simple box model (a slice model with just
one slice) might be sufficient to approximate the sausage
model. However, assuming a slice model with d1=d2=0
(just one box without the hemiellipsoidal caps attached
to it, Fig. 3), a clear deviation between the distributions
is seen at the edges (Fig. 12c). A box model is thus too
coarse for assessing the bacterium’s edges. This is also
reflected in the larger deviation between the resulting
width of dy=10.492 of the box model and the exact
width of dy=11 pixels of the sausage model. For the
same pixel size, this would correspond to a bias of
�51 nm. The reason for this discrepancy is obviously the
mismatch between the rectangular cross-sections of the
slice model and the circular cross-sections of the sausage
model. If the slice model is used instead for determining
the relative displacements of the left and right borders of
the sausage model, the bias becomes much smaller: in-
creasing the width dy of the sausage model from
11 pixels to 11.1 pixels (all other parameters kept un-
changed, see legend of Fig. 12), and analyzing the re-
sulting intensity distribution Iobj(x,y) with the
distribution Iobjðx; yÞ of the slice model, results in a
width of dy=10.59 pixels. The detected increase of the
width of the object of Ddy=0.098 pixels is in excellent
agreement with the exact change of 0.1 pixels. For a
pixel size of 88 nm, the deviation would therefore be a
few Angstroms. Another convenient feature of the slice
model is that small length changes of a non-symmetric
sausage model (d1 „ d2) can be detected using a sym-
metric slice model (d1=d2, fixed). This feature allows us
to reduce the number of fit parameters. For example,
increasing the length of the left hemiellipsoidal cap of
the sausage model from d1=5.5 pixels to d1=6 pixels
(Dd1=Dd=0.5) while the other parameters stay
constant, and analyzing the corresponding intensity
distribution with the distribution of a symmetric slice
model leads to a detected length change of Dd=0.503.
For 88 nm pixel size, the bias is therefore again a few
Angstroms.

Taken together, these results show that the slice
model gives reliable results when used to determine the
absolute length of sausage-like objects such as E. coli

bacteria, or when used to detect relative length and
width changes.
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Rigler R, Mets Ü, Widengren J, Kask P (1993) Fluorescence cor-
relation spectroscopy with high count rate and low background:
analysis of translational diffusion. Eur Biophys J 22:169-175

Saxton MJ, Jacobson K (1997) Single-particle tracking: applica-
tions to membrane dynamics. Annu Rev Biophys Biomol Struct
26:373-399
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